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Abstract. In the parasite problem, a particle (‘ant’) diffuses randomly on a random 
percolation cluster in the limit of concentration- 0 (‘lattice animal’). Monte Carlo simula- 
tions and scaling arguments show that for large animals the distance r travelled by this 
parasite increases as t ” * ~  with time r. We find z, = 3.4 on the simple cubic lattice and 
zA = 2.6 on the square lattice. This anomalous diffusion is in rough agreement with a 
generalisation of a suggestion by Alexander and Orbach. Heuristic arguments in favour 
of this suggestion are given. Also, we look at corrections to scaling for concentrations 
equal to the percolation threshold. 

1. Introduction 

The diffusion of a single particle on the random maze formed by a percolation process 
was dubbed ‘ant in a labyrinth’ by de Gennes (1976). Near the percolation threshold 
it has been studied extensively by scaling theories and Monte Carlo simulations (Mitescu 
et a1 1978, Roussenq 1980, Vicsek 1981, Gefen et a1 1983, Alexander and Orbach 
1982, Ben-Avraham and Havlin 1982, Havlin et al 1983: see also Shender 1976), 
with a recent review by Mitescu and Roussenq (1983). In a generalisation of this 
problem, the labyrinth itself can also move and change its form (Kutner and Kehr 
1983, see also Kehr 1983), with a speed slower than that of the diffusing ant. Or, 
instead of a random walk on a random structure one can look at self-avoiding walks 
on the same structure (Kremer 1981). Most of this work concerned averages over 
clusters of many different sizes, and was restricted to the region near the percolation 
threshold of the labyrinth. Gefen et a1 (1983) pointed out already that the results 
then depend on the type of average involved; and they looked at the behaviour for 
one fixed cluster size. They also pointed out that one should expect different diffusion 
properties on ‘lattice animals’, i.e. on clusters below the percolation threshold which 
are large compared with the correlation length. 

The present paper continues these ideas by: (i) giving a scaling theory which also 
discusses in detail the animal limit (we call this special case of ants on an animal the 
parasite problem); (ii) presenting Monte Carlo results in two and three dimensions 
for parasites; and (iii) giving heuristic arguments to explain our parasite results. As 
a by-product we will obtain a derivation of the scaling law relating the percolation 
conductivity exponent p to other critical exponents of percolation theory, like p or v. 
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2. Scaling theory 

First we present a general scaling theory for diffusion on percolation clusters, both at 
the percolation threshold and for lattice animals. We assume the scaling form (Gefen 
et a1 10831, with U =  l / p S  = (1 +1/6) /dv:  

r2 = R?g( t / s ' /D ,  ( p - p c ) s " )  = t5-'ffr(t/tz, R , / O  = t5- '4*(t /5' ,  t lRS), (1) 

where z = 2 + 8 = 2 + ( p  - p ) /  v is the anomalous diffusion exponent (for concentrations 
p at the percolation threshold pc the average end-to-end distance r walked by the ant 
is related to the time t, i.e. to the number of walk attempts, by t a r' asymptotically). 
Note that r 2 ( t )  is averaged only on clusters containing s sites and was denoted by 
Gefen et a1 (1983) as ( r2( t)),. The average radius R ,  of such clusters varies at p = pc 
as s1lD, and the fractal dimensionality D in d dimensions is given by D = d - P /  v 
(Kirkpatrick 1978, Gefen et a1 1981, Kapitulnik et a1 1983a). Th: typical cluster 
radius is the correlation length .$a lp-pc l -" .  The fraction of sites belonging to the 
infinite network varies as ( p  - p J P .  All our scaling discussions refer to the limits p + p c ,  
s + a) and t + a). Thus equation (1) is nothing but the percolation analogue of dynamical 
scaling (Hohenberg and Halperin 1977), applied to clusters of a given size s. We now 
discuss the three limits ( p - p , ) ~ "  + 0 ('critical clusters'),+ + a)('droplets'), and + -CO 

('animals'; very large clusters slightly below pc  seem to have the same asymptotic 
behaviour as medium sized clusters at p = 0. For according to Family and Coniglio 
(1980), the renormalisation group flows indicate that all clusters below pc  are 'animal'- 
like, provided R,  >> 5 (Stauffer 1979)). This discussion is the kinetic analogue of static 
results for the cluster radius R ,  (Stauffer 1979, Essam 1980). 

For this purpose we need also the assumption of 'strong' similarity, inherent in 
many discussions of the fractal nature of clusters (e.g. Gefen et a1 1981, Kapitulnik 
et a1 1983a, b, Stanley and Coniglio 1983). If we take a piece of a large cluster, with 
the piece centred about a cluster site and having the linear dimension L, then on the 
average this piece will be similar to a piece taken out of an even larger cluster, provided 
L is the same. (This assumption of strong similarity is not trivial since the density in 
the centre of very large clusters decreases with increasing cluster size (Herrmann 1979, 
Stauffer 1979). But here we require the centre to be a cluster site, as done e.g. by 
Forrest and Witten (1979) or Kapitulnik et a1 (1983a, b ) ) .  

2.1. Critical clusters 

Equation (1) gives r2 = R S g ( t / s Z / D ,  0 )  at p = p c .  For small times t, s must cancel out 
according to the strong similarity hypothesis (consistent with our numerical data). 
Thus g ( y  + 0,O) a y2/' and r 2 a  t2". For long times, g (  y + CO, 0 )  approaches a constant, 
and r 2 a  R :  a s " ~ ,  since each site is visited with the same probability for very large 
times. Thus the ant practically measures the radius of gyration of the finite cluster 
(Gefen et a1 1983, Essam 1980). 

2.2. Droplets 

For these large clusters above pc equation (1) gives r 2 a  tt-'4+(t/&', t / R S )  and we 
have to distinguish three regimes for t. If 1 << t << t', strong similarity requires r to be 
independent of s and of p - p c ,  since no singularities are expected at fixed finite times 
t :  r 2 a f 2 / '  as for critical clusters. For 5'<< t<< RSSe we have r 2 x t 5 - ' + + a  t ( p - p c ) p - P  
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as is well known (de Gennes 1976). One may write this result as ~ / t * a ( r / t ) ~  with 
tt = 5' as the characteristic time of percolative diffusion. This result can be interpreted 
as describing usual diffusion with a step distance 6, and a time step te In the third 
regime, t >> R f t '  we have r 2 a  R f  again. (The distinction between t < R f t '  and 
t >  R f t '  is made to give matching of normal diffusion and saturation regime, r a t " *  
and r = constant at the boundary t = Rft'.)  

2.3. Animals 

Equation (1) gives r2 = tt-'f-(t/t', R, /[ ) .  For short times, 1 <c. tcc tZ, r 2 a  t2/' is again 
independent of s and p - pc .  For very large times we have again r2  a R 5. For intermedi- 
ate times we expect a different power behaviour, t a r 'A= r 2 + ' A ,  with 'animal' exponents 
zA and 6 A  to be estimated below. (See also footnote (15) of Gefen et a1 1983.) Strong 
similarity requires this law to be independent of s; therefore r2 = tt-"-( t /  t', CO). 

Combination of both requirements gives f-( Y, CO) 0: Y-1+2izA, and thus r 2 a  
t 2 / r , 5 2 (  e,-')! 2, . Matching at the boundary shows that this result is expected to hold 
for t<< R;A~'- 'A.  This result can be written in the more plausible form t / t 5 < <  
(R , / [ ) 'A ,  analogously to the droplet case at intermediate times. 

Having discussed the leading behaviour in these three special cases, we now look 
at the correction terms for critical droplets, if p is very close but not equal to pc. The 
distance r ,  depending on s and t as well as on p ,  should not feel the phase transition 
at p = pc if s and t are fixed. Therefore, if we write (1) as 

W' ( P  - P c ) ,  S"(P - PJ l  (2) r 2  = pi' 

then the function IL should be analytic in p - p c  and thus presumably in both of its 
arguments, if these arguments go to zero. Then the leading correction terms are 

(3) r 2  = 2 i Z  [CO + c l ( p  - p c ) t ' /  "' + c 2 ( p  - p c ) s U  + . . .] t 

for the distance travelled by the ant in clusters of one fixed size s very close to the 
percolation threshold pc. Usually one investigates the case where the ant starts running 
at a randomly selected lattice site (Mitescu and Roussenq 1983). In this case the 
averages, denoted as (. . .), involve a sum over all cluster sizes s, with a weight equal 
to the probability n,s (Stauffer 1979, Essam 1980) that a site belongs to a cluster of 
size s. Summing over (3) we get an expansion of the same type: 

(co+cl(p-pc) t l~" '  +. . .), (4) ( r 2 )  = t ( 2 - P / ~ ) i z 9 [ t l i ~ Z ( p - P C ) ]  = t ( 2 - P i Y ) i Z  

where the new scaling function 9 is an integral involving the old scaling function CC, 
for the cluster size distribution. The modified power of t in the prefactor results from 
the averaging over all clusters (Gefen et a1 1983). 

3. Monte Carlo simulations 

Our own Monte Carlo work concentrated on that exponent in the above scaling 
theories which our formulae do not predict from the critical exponents near the 
threshold, i.e. the animal exponent zA( = 2 + 6A).  Within a single large lattice animal 
the ant, now called a parasite, diffuses according to the law t a r ' ~ .  Numerically, it is 
very difficult to study animals much larger than [ near pc. Thus instead we concentrate 
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on the case p + 0 where 6 is small. Even then our analysis is hampered by the limited 
animal size. 

We used the shape fluctuation algorithm ( 0  2.3.3 of Stauffer 1979), where one 
produces various different configurations of one isolated cluster with s sites. This 
method allows, in contrast to all other Monte Carlo simulations of ants, to study 
diffusion in the limit p = 0; it is less efficient than other methods near pc. Table 1 gives 
details of our computer runs for p = 0 only. Computer time limitations prevented us 
from simulating animals with more than 512 sites for d = 3 or 900 sites for d = 2. In 
three dimensions, memory limitations were also important though we stored the status 
of up to 30 lattice sites in one 60-bit word on the CDC Cyber 76 computer; somewhat 
larger clusters were studied at pc, where their radius is smaller. At each step of the 
walk the parasite selects randomly a neighbour lattice site and attempts to jump to it. 
If that neighbour site is occupied, the ant jumps, otherwise it stays at its old place, as 
discussed by Vicsek (1981) or Mitescu and Roussenq (1983). 

Table 1. Details of computer runs in the animal limit p = 0. s counts the number of sites 
in the animal, n, the number of different clusters investigated for one size, n, the number 
of ant walks for each cluster investigation, using configurations between t i  and t i  Monte 
Carlo steps per site in the cluster shape fluctuation algorithm. For three dimensions (upper 
part) five such runs were made for each of the three largest cluster sizes; for two dimensions, 
only one or two runs. A run for s = 83 took about 8000 s, the run for s = 30’ about 1200 s 
on a CDC Cyber 76. More details are given by Wilke (1983). 

23 34 80 1000 2000 
33 34 270 1000 2000 
43 68 640 200 1200 
53 14 1250 200 395 
63 82 2160 200 1215 
73 60 3430 200 900 
83 14 5120 200 395 

~~~ 

20’ 14 5600 300 495 
25’ 11  6875 300 465 
30’ 11  9900 300 465 

For three dimensions, figure 1 shows the average distance r travelled by the parasite 
at the time t, where r is measured in lattice constants and t in jump attempts. For the 
small clusters of figure l (a ) ,  saturation is reached once r approaches the animal radius 
R,. Thus only for large animals, like s = 512 in figure 1( b) ,  can we try to look for an 
extended region where 1 << r<< R,. Figure 2 shows (for s = 63, 73 and 83) the effective 
critical exponent l / z A  = d(1og r)/d(log t ) ,  determined by fitting tangents on the curves 
of figure 1.  We see in all cases a nonlinear decrease of this effective exponent l / z A  
with time. For s = 73 an inflection point becomes visible at l / z A  = 0.325 50.01, which 
is more pronounced for s = 83 at l / zA = 0.315 50.005. Since nothing is known to us 
on the asymptotic correction terms for large s we extrapolate linearly in l/s to .  
l/zA=0.035, or 

ZA = 3.4 f 0.4, ( d  = 3), 
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05[ 

0 2  O 3l 

Figure 1. Variation of average end-to-end distance r of random walk of ant on lattice 
animal ('parasite') of a fixed size in the simple cubic lattice: ( a ,  size = 23 (crosses), 33 (open 
triangles) and 43 (full circles); ( b ) ,  size = 83. 

Analogous determinations were made for d = 3 at p = pc = 0.31 17 for s = 93 giving 
z = 3.4 i 0.1 for this cluster size, and no reliable exponent for smaller sizes. The scaling 
prediction for asymptotic value z = 2 + ( p  - p ) /  v is about 3.8 0.2 (Derrida et aZl983, 
Mitescu and Greene as cited by Mitescu and Roussenq 1983, Alexander and Orbach 
1982), suggesting that the asymptotic exponent is larger than the effective z found a 
finite s, in agreement with the above extrapolation for animals. For p = 0.1 we found 
z =3.3*0.15 in a cluster with 83 sites, i.e. a value in between the animal and the 
critical cluster exponent. For p = 0.2 we failed to get a reliable estimate. We expect 
the true exponent to be animal-like for all p below pc. 

Figure 3 shows that the saturation limit for r (  t )  is presumably reached exponentially, 
though our comparison of a decay as exp(-constant t) and exp(-constant t'") favours 
only slightly the first choice. Assuming this simple-exponential decay for sufficiently 
large time in the average distance forfixed cluster size s, we can calculate the asymptotic 
behaviour of the average ( r 2 )  = Z,sn,(r2(t)), over all cluster sizes s, which is measured 
in most of the experiments reviewed by Mitescu and Roussenq (1983). Slightly below 
pc,  for t + 00, this average is dominated by animals with R, a d s  (d = 3; Parisi and 
Sourias 1981), and log n , a - s  (Stauffer 1979). Strong similarity no longer applies 
for the time dependence over distances >> 6. If we assume nevertheless the constant in 
exp(constant t / R f )  above to be independent of s, then for the average over all clusters 
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Figure 2. Variation of effective exponent z in r a t " '  for lattice animals of size 63,  7 3  and 
83. ( a ) ,  Cluster with 512 sites, ( b )  393 sites and (c) 216 sites. For these larger clusters 
the error bar is the standard deviation from five runs, thus the probable error for each 
point is about half the error bar shown. (1 /z  is calculated by fitting tangents to the curves 
of log r against log t.) 

2o0 25  50 75 100 125 150 175 200 225 250 

fi 
2o0 25  50 75 100 125 150 175 200 225 250 

IO.,. . . fi 

2 3 -  '.. **. 
: ? -  
1.1,  8 :  '. - 

0 3- I "  *.*.. 
* .  

0 2- 
01 

* .  
0 

01 
0 8 16 2 L  32 40 48 56 6L  7 2 ~ 1 0 ~  

t 

Figure 3. Approach to saturation for an a_nimal with 512 sites. The crosses ( t )  follow a 
straight line better than the full circles ( J t ) ,  suggesting that exp(-constant t )  is a better 
approximation than exp(-constant t '"). 

we get (see also Pandey et a1 1983) 

log((r(m)2) - ( r ( t ) 2 ) )  a - t ' / * ,  ( d  = 3, t + a?). (6) 
Even if we allow the constant in the exponential to decrease with increasing s we do 
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not find exp(-constant t )  for the average over all s. This effect may explain why Mitescu 
and Roussenq needed many free parameters to fit the asymptotic behaviour of the 
average distance to a simple exponential decay. 

Monte Carlo simulation on the square lattice gave similar results. The effective 
exponent was found to be zA = 2.65 f 0.03 for animal size s = 625 and 2.63 * 0.07 for 
s = 900. Extrapolation to s + 00 gives 

zA = 2.6f0.3,  ( d  = 2). (7) 

4. Heuristic arguments and discussion 

We now discuss a simple approximate model to explain at least roughly the parasite 
results (5)  and (7). Figure 4 shows a simplified picture of the interior of a large critical 
cluster or animal. We assume a finite number of radial links, which are quasi-one- 
dimensional but not straight. At a distance r from the cluster centre they have a length 
1 = 1( r )  > r. In addition to these radial links we have dangling bonds, which are also 
assumed to be quasi-one-dimensional, with an average length Id ( r ) .  Some of these 
dangling bonds, belonging to different radial links, may form parts of a circular link, 
as also shown schematically in our picture. 

Figure 4. Schematic presentation of the region of a 
large animal or critical cluster near the origin of the 
ant walk. Radial links (ending with arrows) coexist 
with circular links and dead ends. This approxima- 
tion may give the Alexander-Orbach scaling law for 
critical percolation clusters, and z = 3 for three- 
dimensional animals. 

Figure 5. Schematic picture of a cluster consisting 
of spherical shells and radial links. 

In the absence of dangling bonds we are left with some sort of a ‘backbone’ 
(Kirkpatrick 1978). Then the ant travels an end-to-end distance r in a time proportional 
to l ( r ) ’ .  With a dangling end attached to a finite fraction of sites on the radial links, 
this simple law I Cc 1’ is replaced by t /  fda 1’. Here t d  is the average time the ant spends 
in a dangling end of length Id before it continues to travel along the radial link. This 
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time td, which is related to the average return time to the origin, varies as 1,. The 
probability to cross a circular link is negligibly small compared with the probability 
to return to the origin of the circular link, since the crossing time varies as 1; and not 
as 1,. Thus, the total time t ( r )  to reach an end-to-end distance r varies as 121d for the 
randomly walking ant in our picture. 

How do the lengths 1 and Id depend on the distance r? The total mass M = M(r) ,  
measured as the number of sites, in that part of the cluster having a distance up to r 
from the origin, varies as rD, where D is the same fractal or effective dimensionality 
as in equation (1) (Gefen et a1 1981 or Kapitulnik et a1 1983a give earlier references). 
Each radial link itself has the mass 1 and carries with it numerous dangling bonds of 
average mass Id, originating from a finite fraction of the 1 sites on the radial link. Thus, 
the total mass of radial link and attached dangling bonds varies as 1 +constant ldl a ldl. 
Most of the mass is in the dangling bonds (Stanley and Coniglio 1983, Gefen 1983). 
Thus, rD a M a  1,l for large distances. When all the dangling bonds are eliminated, 
one is left with the 'backbone'. The backbone mass may be written as l a  rDs, where 
DB = d - PB/ v is the backbone fractal dimensionality (Kirkpatrick 1978, Gefen et a1 
1981); thus Combining these two results, the total time to travel an 
end-to-end distance r becomes 

t a 121da rDtDB, or z = D + D B  (8) 
At  p = pc for d > 6 ,  one has D = 4 and DB = 2 (Kapitulnik et a1 1983b). Thus 

D = 2DB, or l d a  1: the interior structure of a long dangling end is about the same as 
that of a radial link. If one accepts this relation for all dimensionalities and also for 
the animal limit, one ends up with 

z = 3012.  (9) 
For three-dimensional animals we have D = 2 exactly (Parisi and Sourlas 1981), and 
thus (9) gives z A = 3 ,  in rough agreement with (5). In two dimensions (9) yields 
zA = 2.34, also not inconsistent with our equation (7). For eight dimensions, zA = 6 
since D = 4, if our result (9) would be exact. 

Our geometrical model, figure 4, assumed a finite number of radial links. We now 
present another heuristic argument, relating the diffusion exponents to the geometrical 
structure of the infinite cluster and showing that, indeed, the number of radial links 
is small. 

We consider a diffusion process starting at some site on a large cluster, and assume 
for simplicity that at a time t later all N sites within a sphere of radius r( t )  have equal 
probability to be occupied by the diffusion ant. Here r( t )  a t'" and N a rD. At a time 
t + A t ,  the only ants that can contribute to an increase in r ( t )  are those which may 
propagate from the surface of the sphere. Their number varies as C( r ) / rD  where 
C ( r )  a rFX is the number of effective one-dimensional links connecting radially the 
sphere of radius r to the sphere of radius r+Ar, see figure 5.  Each ant that diffuses 
from the r shell to the ( r  + Ar) shell, increases the squared distance by ( r  + Ar)*- r2 a r. 
Thus the diffusivity is 

d r2 ( t ) /d t a  rC(r)/rD. (10) 

(For diffusion on a regular d-dimensional lattice, D = d  and C ( r ) a r d - ' .  Hence 
dr2/dt  =constant, the well known Fickian result.) 

Now we relate C (  r) to the conductivity of random resistor networks. Let us apply 
a voltage AV = 1 between two shells at distances rl and r2 > rl from the origin: V(r,)  = 1 
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and V ( r 2 )  = 0.  Assuming an isotropic average conductivity a r-"" we obtain a solution 
for the potential V :  

V ( r ) = ( r - y - r T y ) / ( r ; y - r ; y ) ,  ( r l  < r <  r 2 ) ,  (11)  

where y = d - 2- p /  v. The total current between the shells varies as (r;' - T i Y  I-', 
and the total resistance R = R(r2) as rYY - r i Y .  Thus dR/dr2= r;'-'. On the other 
hand, R ( r2 + A t )  is obtained by adding in series to R ( r2)  the resistance of C( r2 )  parallel 
resistors of length Ar. Thus rYy-' cc C(r2)- ' ,  and therefore 

x = 1 - d + p /  U. (12) 

This prediction gives x = 0.03, -0.2, and 1 for d = 2, 3 and 6 respectively. Thus at 
low dimensions the number of effective intrashell connections is almost constant. (This 
C ( r )  is not to be confused with the order of ramification, which is finite for critical 
clusters as well as for animals (Gefen et a1 1981)). The fact that x is positive for high 
d is related to the amount of wiggle in the links: indeed there is a finite number of 
intershell links; however, each link contributes to the intershell resistance more than 
a unit resistance, and thus should be counted as less than one effective link. Note that 
(12) is consistent with scaling. From (10) and (12) we find for the average diffusivity 

I-', (13) dr2 /d ta  r - X - D + l  0~ r d - l - ( & - P ) / u + l  = 

as required (Gefen eta1 1983). It would be nice to have direct Monte Carlo calculations 
of C(r )  to  test this geometrical description of diffusion. 

For critical clusters, (9) was already suggested on numerical grounds by Alexander 
and Orbach (1982), with some arguments in favour of (9) given by Rammal and 
Toulouse (1983). We find our argument more transparent, but not very reliable. 
Equation (9) may well turn out to be merely a good approximation, as the links-and- 
nodes picture of Skal, Shklovskii and de Gennes (Stanley and Coniglio 1983), or as 
Flory's approximation for self-avoiding walks. In particular, our Monte Carlo data 
for two-and-three-dimensional parasites are barely compatible with (9), and the picture 
itself becomes unreliable if D is smaller than 2 (as for d = 2),  where it would predict 
la Ida rD'2 < r in the approximation leading to (9). Moreover, the links and nodes 
picture breaks down at low dimensionalities (Gefen et a1 1981) and should be replaced 
by another self-similar model. 

It would be interesting to define a backbone dimensionality DB for animals and to 
check our more general equation (8). These questions are of great interest since 
together with z = 2 +  ( p  -/3)/ U equations (8) and (9) link the conductivity exponent 
p with other (geometrical) critical exponents of percolation theory. (It is obvious why 
(9) is invalid in one dimension: the above separation of radial links from dangling ends 
breaks down. On the other hand, (8) then yields the correct value z = D + DB = 2 
since backbone and cluster become identical.) For p above pc we have a rather 
homogeneous, swiss-cheese like interior of very large droplets, and thus normal 
diffusion takes place: z = 2 independent of dimension. These points should thus not 
be used as arguments against the Alexander-Orbach law.) 

In summary, we presented (for both animals and critical percolation clusters) the 
first Monte Carlo data for ant diffusion as a function of cluster size. We offered an 
explanation, presumably approximate, for the animal exponents observed in two and 
three dimensions. The same explanation, applied to the percolation threshold, repro- 
duces the scaling law of Alexander and Orbach and is an argument entirely different 
from that of Rammal and Toulouse. 
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